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Abstract. The matrix computation language and environment MATLAB is extended to include

sparse matrix storage and operations. The only change to the outward appearance of the MATLAB
language is a pair of commands to create full or sparse matrices. Nearly all the operations of MATLAB

now apply equally to full or sparse matrices, without any explicit action by the user. The sparse
data structure represents a matrix in space proportional to the number of nonzero entries, and most

of the operations compute sparse results in time proportional to the number of arithmetic operations
on nonzeros.
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1. Introduction. MATLAB is an interactive environment and programming lan-

guage for numeric scientific computation [18]. One of its distinguishing features is the

use of matrices as the only data type. In MATLAB, a matrix is a rectangular array

of real or complex numbers. All quantities, even loop variables and character strings,

are represented as matrices, although matrices with only one row, or one column, or

one element are sometimes treated specially.

The part of MATLAB that involves computational linear algebra on dense matrices

is based on direct adaptations of subroutines from LINPACK and EISPACK [5], [23].

An m x n real matrix is stored as a full array of mn floating point numbers. The

computational complexity of basic operations such as addition or transposition is pro-

portional to ran. The complexity of more complicated operations such as triangular

factorization is proportional to mn 2. This has limited the applicability of MATLAB

to problems involving matrices of order a few hundred on contemporary workstations

and perhaps a few thousand on contemporary supercomputers.

We have now added sparse matrix storage and operations to MATLAB. This report

describes our design and implementation.

Sparse matrices are widely used in scientific computation, especially in large-

scale optimization, structural and circuit analysis, computational fluid dynamics, and,

generally, the numerical solution of partial differential equations. Several effective

Fortran subroutine packages for solving sparse linear systems are available, including

SPARSPAK [11], the Yale Sparse Matrix Package [9], and some of the routines in the

Harwell Subroutine Library [25].
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TABLE 1

Operations with the 4096 by 4096 discrete Laplacian.

Sparse Full

Memory 0.25 megabyte 128 megabytes
Compute Dx 0.2 seconds 30 seconds
Solve Dx : b 10 seconds :> 12 hours

Our work was facilitated by our knowledge of the techniques used in the Fortran

sparse matrix packages, but we have not directly adapted any of their code. MATLAB

is written in C and we wished to take advantage of the data structures and other

programming features of C that would not be used in a simple translation of Fortran

code. We also wanted to implement the full range of matrix operations that MATLAB

provides; the Fortran packages do not generally have routines for simply adding or

transposing sparse matrices, for example. And, finally, we wanted to incorporate some

recent algorithmic ideas that are not used in the Fortran packages.

J. H. Wilkinson's informal working definition of a sparse matrix was "any matrix

with enough zeros that it pays to take advantage of them." So sparsity is an economic

issue. By avoiding arithmetic operations on zero elements, sparse matrix algorithms

require less computer time. And, perhaps more importantly, by not storing many zero

elements, sparse matrix data structures require less computer memory. In a sense,

we have not added any new functionality to MATLAB; we have merely made some

existing functionality more efficient in terms of both time and storage.

An important descriptive parameter of a sparse matrix S is nnz(S), the number of

nonzero elements in S. Computer storage requirements are proportional to nnz. The

computational complexity of simple array operations should also be proportional to

nnz, and perhaps also depend linearly on m or n, but be independent of the product

ran. The complexity of more complicated operations involves such factors as ordering

and fill-in, but an objective of a good sparse matrix algorithm should be:

The time required for a sparse matrix operation should be propor-

tional to tile number of arithmetic operations on nonzero quantities.

We call this the "time is proportional to flops" rule; it is a fundamental tenet of our

design.

With sparse techniques, it is practical to handle matrices involving tens of thou-

sands of nonzero elements on contemporary workstations. As one example, let D be

the matrix representation of the discrete five-point Laplacian on a square 64 × 64 grid

with a nested dissection ordering. This is a 4096 × 4096 matrix with 20,224 nonzeros.

Table 1 gives the memory requirements for storing D as a MATLAB sparse matrix and

as a traditional Fortran or MATLAB full matrix, as well as the execution time on a

Sun SPAaCstation-1 workstation for computing a matrix-vector product and solving

a linear system of equations by elimination.

Band matrices are special cases of sparse matrices whose nonzero elements all

happen to be near the diagonal. It would be somewhat more efficient, in both time

and storage, to provide a third data structure and collection of operations for band

matrices. We have decided against doing this because of the added complexity, par-

ticularly in cases involving mixtures of full, sparse, and band matrices. We suspect

that solving linear systems with matrices that are dense within a narrow band might

be twice as fast with band storage as it is with sparse matrix storage, but that lin-

ear systems with matric_s that are sparse within the band (such as those obtained
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from two-dimensional grids) are more efficiently solved with general sparse matrix

technology. However, we have not investigated these tradeoffs in any detail.

In this paper, we concentrate on elementary sparse matrix operations, such as

addition and multiplication, and on direct methods for solving sparse linear systems

of equations. These operations are now included in the "core" of MATLAB. Except
for a few short examples, we will not discuss higher-level sparse matrix operations,
such as iterative methods for linear systems. We intend to implement such operations

as interpreted programs in the MATLAB language, so-called "m-files," outside the
MATLAB core.

2. The user's view of sparse MATLAB.

2.1. Sparse matrix storage. We wish to emphasize the distinction between a
matrix and what we call its storage class. A given matrix can conceivably be stored

in many different ways fixed point or floating point, by rows or by columns, real or
complex, full or sparse---but all the different ways represent the same matrix. We

now have two matrix storage classes in MATLAB, full and sparse.

Two MATLAB variables, h and B, can have different storage classes but still rep-

resent the same matrix. They occupy different amounts of computer memory, but in

most other respects they are the same. Their elements are equal, their determinants

and their eigenvalues are equal, and so on. The crucial question of which storage class

to choose for a given matrix is the topic of §2.5.

Even though MATLAB is written in C, it follows its LINPACK and Fortran pre-
decessors and stores full matrices by columns [5], [19]. This organization has been

carried over to sparse matrices. A sparse matrix is stored as the concatenation of the

sparse vectors representing its columns. Each sparse vector consists of a floating point

array of nonzero entries (or two such arrays for complex matrices), together with an

integer array of row indices. A second integer array gives the locations in the other

arrays of the first element in each column. Consequently, the storage requirement
for an m × n real sparse matrix with nnz nonzero entries is nnz reals and nnz + n

integers. On typical machines with 8-byte reals and 4-byte integers, this is 12nnz +4n

bytes. Complex matrices use a second array of nnz reals. Notice that m, the number
of rows, is almost irrelevant. It is not involved in the storage requirements, nor in the

operation counts for most operations. Its primary use is in error checks for subscript

ranges. Similar storage schemes, with either row or column orientation, are used in

the Fortran sparse packages.

2.2. Converting between full and sparse storage. Initially, we contem-

plated schemes for automatic conversion between sparse and full storage. There is

a MATLAB precedent for such an approach. Matrices are either real or complex and
the conversion between the two is automatic. Computations such as square roots and

logarithms of negative numbers and eigenvalues of nonsymmetric matrices generate

complex results from real data. MATLAB automatically expands the data structure

by adding an array for the imaginary parts.
Moreover, several of MATLAB's functions for building matrices produce results

that might effectively be stored in the sparse organization. The function zeros (re,n),

which generates an m × n matrix of all zeros, is the most obvious candidate. The
functions eye (n) and diag (v), which generate the n x n identity matrix and a diagonal
matrix with the entries of vector v on the main diagonal, are also possibilities. Even

tril (A) and triu(A), which take the lower and upper triangular parts of a matrix A,

might be considered. But this short list begins to demonstrate a difficulty--how far



336 JOHNR.GILBERT,CLEVEMOLER,ANDROBERTSCHREIBER

!':%_:i

I_ _0 300 400

7_

6_

4_

100 200 _00 400 500 600 700 IO0

FIG. 1. The Eppstein mesh as plotted by spy(A) and gplot(A,xy).

should "automatic sparsification" be carried? Is there some threshold value of sparsity
where the conversion should be done? Should the user provide the value for such a

sparsification parameter? We don't know the answers to these questions, so we decided

to take another approach, which we have since found to be quite satisfactory.

No sparse matrices are created without some overt direction from the user. Thus,

the changes we have made to MATLAB do not affect the user who has no need for

sparsity. Operations on full matrices continue to produce full matrices. But once

initiated, sparsity propagates. Operations on sparse matrices produce sparse matrices,
and an operation on a mixture of sparse and full matrices produces a sparse result

unless the operator ordinarily destroys sparsity. (Matrix addition is an example; more

on this later.)

There are two new built-in functions, full and sparse. For any matrix A,

full(A) returns A stored as a full matrix. If A is already full, then A is returned

unchanged. If A is sparse, then zeros are inserted at the appropriate locations to fill

out the storage. Conversely, sparse(A) removes any zero elements and returns A

stored a.s a sparse matrix, regardless of how sparse A actually is.

2.3. Displaying sparse matrices. Sparse and flfll matrices print differently.
The statement

h : [0 0 II; 22 0 O; 0 33 O]

produces a conventional /_[ATLAB full matrix that prints as

A =

o o 11

22 0 0

0 33 0

The statement S = sparse(A) converts A to sparse storage, and prints
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FIG, 2. The buckyball as rendered by spy and gplot.

(2,1) 22

(3,2) 33

(1,3) 11

As this illustrates, sparse matrices are printed as a list of their nonzero elements (with

indices), in column major order.

The function nnz (A) returns the number of nonzero elements of A. It is imple-

mented by scanning full matrices, and by access to the internal data structure for

sparse matrices. The function nzmax(A) returns the number of storage locations for

nonzeros allocated for A.

Graphic visualization of the structure of a sparse matrix is often a useful tool. The

function spy(A) plots a silhouette of the nonzero structure of A. Figure 1 illustrates

such a plot for a matrix that comes from a finite element mesh due to Eppstein. A

picture of the graph of a matrix is another way to visualize its structure. Laying out

an arbitrary graph for display is a hard problem that we do not address. However,

some sparse matrices (from finite element applications, for example) have spatial
coordinates associated with their rows or columns. If xy contains such coordinates

for matrix A, the function gplot(A,xy) draws its graph. The second plot in Fig. 1

shows the graph of the sample matrix, which in this case is just the same as the finite

element mesh. Figure 2 is another example: The spy plot is the 60 x 60 adjacency

matrix of the graph of a Buckminster Fuller geodesic dome, a soccer ball, and a C60

molecule, and the gplot shows the graph itself.

Section 3.3.4 describes a function for visualizing the elimination tree of a matrix.

2.4. Creating sparse matrices. Usually one wants to create a sparse ma-

trix directly, without first having a full matrix A and then converting it with S --

sparse (A). One way to do this is by simply supplying a list of nonzero entries and

their indices. Several alternate forms of sparse (with more than one argument) allow

this. The most general is

S = sparse(i,j,s,m,n,nzmax).
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Ordinarily,i and j are vectors of integer indices, s is a vector of real or complex entries,

and rn, n, and nzmax are integer scalars. This call generates an m x n sparse matrix,

having one nonzero for each entry in the vectors i, j, and 8, with S(i(k),j(k)) -- s(k),

and with enough space allocated for S to have nzmax nonzeros. The indices in i and

j need not be given in any particular order.

If a pair of indices occurs more than once in i and j, sparse adds the correspond-

ing values of s together. Then the sparse matrix S is created with one nonzero for each

nonzero in this modified vector s. The argument s and one of the arguments i and j

may be scalars, in which case they are expanded so that the first three arguments all

have the same length.

There are several simplifications of the full six-argument call to sparse.

S = sparse(i,j ,s,m,n) uses nzmax = length(s).

S = sparse(i,j ,s) uses rn = max(i) and n = max(j).

S = sparse(re,n) is the same as S = sparse([],[],[],m,n), where [] is

MATLAB'S empty matrix. It produces the ultimate sparse matrix, an rn × n matrix

of all zeros.

Thus, for example,

S = sparse([1 2 3], [3 1 2], [11 22 33])

produces the sparse matrix S from the example in §2.3, but does not generate any

full 3 × 3 matrix during the process.

MATLAB'S function k = find(h) returns a list of the positions of the nonzeros

of A, counting in column major order. For sparse MATLAB we extended the definition

of find to extract the nonzero elements together with their indices. For any matrix A,

full or sparse, [i,j,s] -- find(h) returns the indices and values of the nonzeros,

(The square bracket notation on the left side of an assignment indicates that the

function being called can return more than one value. In this case, find returns three

values, which are assigned to the three separate variables i, j, and s.) For example_

this dissects and then reassembles a sparse matrix:

[i,j,s] = find(S);

[m,n] = size(S);

S = sparse(i,j ,s,m,n) ;

So does this, if the last row and column have nonzero entries:

[i,3,s] = find(S);

S = sparse(i,j,s);

Another common way to create a sparse matrix, particularly for finite difference

computations, is to give the values of some of its diagonals. Two functions dings

and blockdiags can create sparse matrices with specified diagonal or block diagonal

structure.

There are several ways to read and write sparse matrices. The MATLAB save

and load commands, which save the current workspace or load a saved workspace,

have been extended to accept sparse matrices and save them efficiently. We have

written a Fortran utility routine that converts a file containing a sparse matrix in the

Harwell Boeing format [6] into a file that MATLAB can load.
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2.5. The results of sparse operations. What is the result of a MATLAB oper-

ation on sparse matrices? This is really two fundamental questions: what is the value
of the result, and what is its storage class? In this section we discuss the answers that

we settled on for those questions.
A function or subroutine written in MATLAB is called an m-file. We want it to be

possible to write m-files that produce the same results for sparse and for full inputs.
Of course, one could ensure this by converting all inputs to full, but that would defeat

the goal of efficiency. A better idea, we decided, is to postulate that:

The value of the result of an operation does not depend on the storage

class of the operands, although the storage class of the result may.

The only exception is a function to inquire about the storage class of an object:

issparse(A) returns 1 if A is sparse, 0 otherwise.

Some intriguing notions were ruled out by our postulate. We thought, for a while,
that in cases such as A ./ S (which denotes the pointwise quotient of A and S) we

ought not to divide by zero where S is zero, since that would not produce anything
useful; instead we thought to implement this as if it returned A(i, j)/S(i, j) wherever

S(i,j) _ 0, leaving A unchanged elsewhere. All such ideas, however, were dropped in
the interest of observing the rule that the result does not depend on storage class.

The second fundamental question is how to determine the storage class of the

result of an operation. Our decision here is based on three ideas. First, the storage

class of the result of an operation should depend only on the storage classes of the

operands, not on their values or sizes. (Reason: it is too risky to make a heuristic de-
cision about when to sparsify a matrix without knowing how it will be used.) Second,

sparsity should not be introduced into a computation unless the user explicitly asks

for it. (Reason: the full matrix user should not have sparsity appear unexpectedly,
because of the performance penalty in doing sparse operations on mostly nonzero

matrices.) Third, once a sparse matrix is created, sparsity should propagate through
matrix and vector operations, concatenation, and so forth. (Reason: most m-files

should be able to do sparse operations for sparse input or full operations for full input

without modification.)

Thus full inputs always give full outputs, except for functions like sparse, whose

purpose is to create sparse matrices. Sparse inputs, or mixed sparse and full inputs,

follow these rules (where S is sparse and F is full):

• Functions from matrices to scalars or fixed-size vectors, like size or nnz,

always return full results.
• Functions from scalars or fixed-size vectors to matrices, like zeros, ones,

and eye, generally return full results. Having zeros(m,n) and eye(re,n)
return full results is necessary to avoid introducing sparsity into a full user's

computation; there are also functions spzeros and speye that return sparse

zero and identity matrices.
• The remaining unary functions from matrices to matrices or vectors generally

return a result of the same storage class as the operand (the main exceptions

are sparse and full). Thus, chol(S) returns a sparse Cholesky factor, and

d±ag (S) returns a sparse vector (a sparse m x I matrix). The vectors returned

by max (S), sum (S), and their relatives (that is, the vectors of column maxima
and column sums, respectively) are sparse, even though they may well be all

nonzero.
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• Binaryoperatorsyieldsparseresultsif bothoperandsaresparse,andfull
resultsif botharefull. In themixedcase,theresult'sstorageclassdepends
on theoperator.Forexample,S + FandS \ F (whichsolvesthelinear
systemSX = F) are full; S .* F (tile pointwise product) and S k F are

sparse.
• A block matrix formed by concatenating smaller matrices, like

(A°)C D '

is written as [h B ; C D] in MATLAB. If all the inputs are full, the result is

full, but a concatenation that contains any sparse matrix is sparse. Submatrix

indexing on the right counts as a unary operator; h = S($,j) produces a

sparse result (for sparse S) whether i and j are scalars or vectors. Submatrix

indexing on the left, as in h(i,j) = $, does not change the storage class of
the matrix being modified.

These decisions gave us some difficulty. Cases like -S and S >= T, where the result has

many ones when the opcrands are sparse, made us consider adding more exceptions

to the rules. We discussed ttle possibility of "sparse" matrices in which all the values

not explicitly stored would be some scalar (like 1) rather than zero. We rejected these

ideas in the interest of simplicity.

3. Implementation. This section describes the algorithms for the sparse oper-

ations in MATLAB in some detail. We begin with a discussion of fundamental dat_
structures and design decisions.

3.1. Fundamentals.

3.1.1. Data structure. A very important implementation decision is the choice
of a data structure. The internal representation of a sparse matrix must be flexible

enough to implement all the MATLAB operations. For simplicity, we ruled out the
use of different data structures for different operations. The data structure should

be compact, storing only nonzero elements, with a minimum of overhead storage for
integers or pointers. Wherever possible, it should support matrix operations in time

proportional to flops. Since MATLAB is an interpreted, iligh-level matrix language,

efficiency is more important in matrix arithmetic and matrix-vector operations than

in accessing single elements of matrices.

These goals are met by a simple column-oriented scheme that has been widely

used in sparse matrix computation. A sparse matrix is a C record structure with

the following constituents. The nonzero elements are stored in a one-dimensional

array of double-precision reals, in column major order. (If the matrix is complex, the

imaginary parts are stored in another such array.) A second array of integers stores

the row indices. A third array of n + 1 integers stores the index into the first two
arrays of the leading entry in each of the n columns, and a terminating index whose

value is nnz. Thus a real m × n sparse matrix with nnz nonzeros uses nnz reals and

nnz + n + 1 integers.

This scheme is not efficient for manipulating matrices one element at a time:

access to a single dement takes time at least proportional to the logarithm of the

length of its column; inserting or removing a nonzero may require extensive data

movement. However, element-by-element manipulation is rare in MATLAB (and is

expensive even in full MATLAB). Its most common application would be to create
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a sparsematrix,but thisis moreefficientlydonebybuildinga list [i,j, s] of matrix

elements in arbitrary order and then using sparse (i, j, s) to create the matrix.
The sparse data structure is allowed to have unused elements after the end of the

last column of the matrix. Thus an algorithm that builds up a matrix one column at

a time can be implemented efficiently by allocating enough space for all the expected
nonzeros at the outset.

3.1.2. Storage allocation. Storage allocation is one of the thorniest parts of

building portable systems. MATLAB handles storage allocation for the user, invisibly

allocating and deallocating storage as matrices appear, disappear, and change size.

Sometimes the user can gain efficiency by preallocating storage for the result of a

computation. One does this in full MATLAB by allocating a matrix of zeros and filling
it in incrementally. Similarly, in sparse MATLAB one can preallocate a matrix (using

sparse) with room for a specified number of nonzeros. Filling in the sparse matrix a

column at a time requires no copying or reallocation.

Within MATLAB, simple "allocate" and "free" procedures handle storage alloca-

tion. (We will not discuss how MATLAB handles its free storage and interfaces to

the operating system to provide these procedures.) There is no provision for doing

storage allocation within a single matrix; a matrix is allocated as a single block of

storage, and if it must expand beyond that block it is copied into a newly allocated
larger block,

MATLAB must allocate space to hold the results of operations. For a full re-

sult, MATLAB allocates mn elements at the start of the computation. This strategy

could be disastrous for sparse matrices. Thus, sparse MATLAB attempts to make a

reasonable choice of how much space to allocate for a sparse result.

Some sparse matrix operations, like Cholesky factorization, can predict in ad-
vance the exact amount of storage the result will require. These operations simply

allocate a block of the right size before the computation begins. Other operations,

like matrix multiplication and LU factorization, have results of unpredictable size.

These operations are all implemented by algorithms that compute one column at a

time. Such an algorithm first makes a guess at the size of the result. If more space
is needed at some point, it allocates a new block that is larger by a constant factor

(typically 1.5) than the current block, copies the columns already computed into the

new block, and frees the old block.

Most of the other operations compute a simple upper bound on the storage re-

quired by the result to decide how much space to allocate--for example, the pointwise

product S .* T uses the smaller of nnz(S) and nnz(T), and S + T uses the smaller

of nnz(S) + nnz(T) and ran.

3.1.3. The sparse accumulator. Many sparse matrix algorithms use a dense

working vector to allow random access to the currently "active" column or row of

a matrix. The sparse MATLAB implementation formalizes this idea by defining an

abstract data type called the sparse accumulator, or SPA. The SPA consists of a dense
vector of real (or complex) values, a dense vector of true/false "occupied" flags, and

an unordered list of the indices whose occupied flags are true.

The SPA represents a column vector whose "unoccupied" positions are zero and

whose "occupied" positions have values (zero or nonzero) specified by the dense real

or complex vector. It allows random access to a single element in constant time, as

well as sequencing through the occupied positions in constant time per element. Most

matrix operations allocate the SPA (with appropriate dimension) at their beginning

and free it at their end. Allocating the SPA takes time proportional to its dimension
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(toturnoffalltheoccupiedflags),butsubsequentoperationstakeonlyconstanttime
pernonzero.

In a sense,theSPAisa registerandan instructionsetin anabstractmachine
architectureforsparsematrixcomputation.MATLABmanipulatestheSPAthrough
somethirty-oddaccessprocedures.Abouthalfof theseareoperationsbetweenthe
SPAandasparseor densevector,froma "spaxpy"thatimplementsSPA:----SPA+aX
(wherea is a scalar and x is a column of a sparse matrix) to a "spaeq" that tests
elementwise equality. Other routines load and store the SPA, permute it, and access

individual elements. The most complicated SPA operation is a depth-first search on

an acyclic graph, which marks as "occupied" a topologically ordered list of reachable

vertices; this is used in the sparse triangular solve described in §3.4.2.

The SPA simplifies data structure manipulation, because all fill occurs in the SPA;

that is, only in the SPA can a zero become nonzero. The "spastore" routine does not

store exact zeros, and in fact the sparse matrix data structure never contains any

explicit zeros. Almost all real arithmetic operations occur in SeA routines, too, which

simplifies _{ATLAB's tally of flops. (The main exceptions are in certain scalar-matrix

operations like 2*h, which are implemented without the SPA for efficiency.)

3.1.4. Asymptotic complexity analysis. A strong philosophical principle in

the sparse MATLAB implementation is that it should be possible to analyze the com-

plexity of the various operations, and that they should be efficient in the asymptotic

sense as well as in practice. This section discusses this principle, in terms of both

theoretical ideals and engineering compromises.

Ideally all the matrix operations would use time proportional to flops, that is,

their running time would be proportional to the number of nonzero real arithmetic

operations performed. This goal cannot always be met: for example, [0 lJ + [1 0J
does no nonzero arithmetic. A more accurate statement is that time should be pro-

portional to flops or data size, whichever is larger. Here "data size" means the size of
the output and that part of the input that is used nontrivially; for example, in h*b

only those columns of A corresponding to nonzeros in b participate nontrivially.

This more accurate ideal can be realized in almost all of MATLAB. The exceptions

are some operations that do no arithmetic and cannot be implemented in time propor-
tional to data size. The algorithms to compute most of the reordering permutations

described in §3.3 are efficient in practice but not linear in the worst case. Submatrix

indexing is another example: if i and j are vectors of row and column indices, B =

h(±,j) may examine all the nonzeros in the columns A(:,j), and B(±,j) = h can at
worst take time linear in the total size of B.

The MATLAB implementation actually violates the "time proportional to flops"

philosophy in one systematic way. The list of occupied row indices in the SPA is not

maintained in numerical order, but the sparse matrix data structure does require row

indices to be ordered. Sorting the row indices when storing the SPA would theoretically

imply an extra factor of O(log n) in the worst-case running times of many of the matrix

operations. All our algorithms could avoid this factor- usually by storing the matrix

with unordered row indices, then using a linear-time transposition sort to reorder all

the rows of the final result at once--but for simplicity of programming we included
the sort in "spastore."

The idea that running time should be susceptible to analysis helps the user who

writes programs in MATLAB to choose among alternative algorithms, gives guidance

in scaling up running times from small examples to larger problems, and, in a general-

purpose system like I_{ATLAB, gives some insurance against an unexpected worst-ease
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instancearisingin practice.Of course,completea priorianalysisis impossible--
theworkin sparseLU factorization depends on numerical pivoting choices, and the

efficacy of a heuristic reordering such as minimum degree is unpredictable---but we

feel it is worthwhile to stay as close to the principle as we can.

In a technical report [14] we present some experimental evidence that sparse

MATLAB operations require time proportional to flops and data size in practice.

3.2. Factorizations. The LU and Cholesky factorizations of a sparse matrix

yield sparse results. MATLAB does not yet have a sparse QR factorization. Section 3.6

includes some remarks on sparse eigenvalue computation in MATLAB.

3.2.1. LU factorization. If A is a sparse matrix, [L,U,P] = lu(h) returns

three sparse matrices such that PA = LU, as obtained by Gaussian elimination with

partial pivoting. The permutation matrix P uses only O(n) storage in sparse format.

As in dense MATLAB, [L,U] -- lU(A) returns a permuted unit lower triangular and

an upper triangular matrix whose product is A.

Since sparse LU must behave like MATLAB's full LU, it does not pivot for sparsity.
A user who happens to know a good column permutation Q for sparsity can, of course,

ask for lu (A*Q'), or lu (A ( •, q) ) where q is an integer permutation vector. Section 3.3

describes a few ways to find such a permutation. The matrix division operators \ and /

do pivot for sparsity by default; see §3.4.

We use a version of the GPLU algorithm [15] to compute the LU factorization.

This computes one column of L and U at a time by solving a sparse triangular system

with the already finished columns of L. Section 3.4.2 describes the sparse triangular
solver that does most of the work. The total time for the factorization is proportional

to the number of nonzero arithmetic operations (plus the size of the result), as desired.
The column-oriented data structure for the factors is created as the factorization

progresses, never using any more storage for a column than it requires. However, the
total size of L or U cannot be predicted in advance. Thus the factorization routine

makes an initial guess at the required storage, and expands that storage (by a factor

of 1.5) whenever necessary.

3.2.2. Cholesky factorization. As in full MATLAB, R -- chol(h) returns the

upper triangular Cholesky factor of a Hermitian positive definite matrix A. Pivoting

for sparsity is not automatic, but minimum degree and profile-limiting permutations
can be computed as described in §3.3.

Our current implementation of Cholesky factorization emphasizes simplicity and

compatibility with the rest of sparse MATLAB; thus it does not use some of the more

sophisticated techniques, such as the compressed index storage scheme [11, § 5.4.2],

or supernodal methods to take advantage of the clique structure of the chordal graph

of the factor [2]. It does, however, run in time proportional to arithmetic operations

with little overhead for data structure manipulation.

We use a slightly simplified version of an algorithm from the Yale Sparse Matrix

Package [9], which is described in detail by George and Liu [11]. We begin with a
combinatorial step that determines the number of nonzeros in the Cholesky factor

(assuming no exact cancellation) and allocates a large enough block of storage. We
then compute the lower triangular factor R T one column at a time. Unlike YSMP

and SPARSPAK, we do not begin with a symbolic factorization; instead, we create the

sparse data structure column by column as we compute the factor. The only reason

for the initial combinatorial step is to determine how much storage to allocate for the
result.
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3.3. Permutations. A permutation of the rows or columns of a sparse matrix

A can be represented in two ways. A permutation matrix P acts on the rows of A

as P*A or on the columns as h*P'. A permutation vector p, which is a full vector of

length n containing a permutation of 1 :n, acts on the rows of A as h(p, : ) or on the

columns as h(: ,p). Here p could be either a row vector or a column vector.

Both representations use O(n) storage, and both can be applied to A in time

proportional to nnz(A). The vector representation is slightly more compact and

efficient, so the various sparse matrix permutation routines all return vectors--full

row vectors, to be precise--with the exception of the pivoting permutation in LU
factorization.

Converting between the representations is ahnost never necessary, but it is simple.
If I is a sparse identity matrix of the appropriate size, then P is I (p, : ) and pT is

I(: ,p). Also p is (P*(l:n)') ' or (l:n)*P'. (We leave to the reader the puzzle of

using find to obtain p from P without doing any arithmetic.) The inverse of P is P';

the inverse r of p can be computed by the "vectorized" statement r(p) = 1 :n.

3.3.1. Permutations for sparsity: Asymmetric matrices. Reordering the

columns of a matrix can often make its LU or QR factors sparser. The simplest such

reordering is to sort the columns by increasing nonzero count. This is sometimes a
good reordering for matrices with very irregular structures, especially if there is great
variation in the nonzero counts of rows or columns.

The MATLAB function p = colperm(h) computes this column-count permuta-
tion. It is implemented as a two-line m-file:

[i,j] --find(h);

[ignore,p] = sort(diff(find(diff([O j' inf]))));

The vector j is tile column indices of all the nonzeros in A, in column major order.
The inner diff computes first differences of j to give a vector with ones at the starts

of columns and zeros elsewhere; the f ind converts this to a vector of column-start

indices; the outer diff gives the vector of column lengths; and the second output

argmnent from sort is the permutation that sorts this vector.

The symmetric reverse Cuthill-McKee ordering described in §3.3.2 can be used

for asymmetric matrices as well; the function symrcm(h) actually operates on the

nonzero structure of A + A T. This is sometimes a good ordering for matrices that

come from one-dimensional problems or problems that are in some sense long and
thin.

Minimum degree is an ordering that often performs better than colporm or

symrcm. The sparse _{ATLAB function p = colmmd(h) computes a minimum-degree
ordering for the columns of A. This column ordering is the same as a symmetric

minimum-degree ordering for the matrix ATA, though we do not actually form ATA

to compute it.

George and Liu [10] survey the extensive development of efficient and effective

versions of symmetric minimum degree, most of which is reflected in the symmetric

minimum-degree codes in SPARSPAK, YSMP, and the Harwell Subroutine Library.

The MATLAB version of minimum degree uses many of these ideas, as well as some
ideas from a parallel symmetric minimum-degree algorithm by Gilbert, Lewis, and

Schreiber [13]. We sketch the algorithm briefly to show how these ideas are expressed

in the framework of column minimum degree. The reader who is not interested in all

the dctails can skip to §3.3.2.
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Althoughmostcolumnminimum-degreecodesforasymmetricmatricesarebased
ona symmetricminimum-degreecode,ourorganizationis theotherwayaround:
MATLAB'ssymmetricminimum-degreecode(describedin §3.3.2)isbasedonits col-
umnminimum-degreecode.This isbecausethebestwayto representa symmetric
matrix(forthepurposesof minimumdegree)isasaunionofcliques,or full subma-
trices.WhenwebeginwithanasymmetricmatrixA, we wish to reorder its columns

by using a minimum-degree order on the symmetric matrix ATA--but each row of A
induces a clique in ATA, so we can simply use A itself to represent ATA instead of

forming the product explictly. Speelpenning [24] called such a clique representation
of a symmetric graph the "generalized element" representation; George and Liu [10]

call it the "quotient graph model." Ours is the first column minimum-degree imple-
mentation that we know of whose data structures are based directly on A, and which

does not need to spend the time and storage to form the structure of ATA. The

idea for such a code is not new, however--George and Liu [10] suggest it, and our

implementation owes a great deal to discussions with Ng and Peyton of Oak Ridge
National Laboratories.

We simulate symmetric Gaussian elimination on ATA, using a data structure that

represents A as a set of vertices and a set of cliques whose union is the graph of ATA.

Initially, each column of A is a vertex and each row is a clique. Elimination of a

vertex j induces fill among all the (so far uneliminated) vertices adjacent to j. This
means that all the vertices in cliques containing j become adjacent to one another.

Thus all the cliques containing vertex j merge into one clique. In other words, all the

rows of A with nonzeros in column j disappear, to be replaced by a single row whose

nonzero structure is their union. Even though fill is implicitly being added to ATA,

the data structure for A gets smaller as the rows merge, so no extra storage is required

during the elimination.

Minimum degree chooses a vertex of lowest degree (the sparsest remaining column
of ATA, or the column of A having nonzero rows in common with the fewest other

columns), eliminates that vertex, and updates the remainder of A by adding fill (i.e.,

merging rows). This whole process is called a "stage"; after n stages the columns
are all eliminated and the permutation is complete. In practice, updating the data

structure after each elimination is too slow, so several devices are used to perform

many eliminations in a single stage before doing the update for the stage.

First, instead of finding a single minimum-degree vertex, we find an entire "inde-

pendent set" of minimum-degree vertices with no common nonzero rows. Eliminating
one such vertex has no effect on the others, so we can eliminate them all at the same

stage and do a single update. George and Liu call this strategy "multiple elimination."

(They point out that the resulting permutation may not be a strict minimum-degree
order, but the difference is generally insignificant.)

Second, we use what George and Liu call "mass elimination": After a vertex j

is eliminated, its neighbors in ATA form a clique (a single row in A). Any of those

neighbors whose own neighbors all lie within that same clique will be a candidate for

elimination at the next stage. Thus, we may as well eliminate such a neighbor during

the same stage as j, immediately after j, delaying the update until afterward. This
often saves a tremendous number of stages because of the large cliques that form late

in the elimination. (The number of stages is reduced from the height of the elimination
tree to approximately the height of the clique tree; for many two-dimensional finite

element problems, for example, this reduces the number of stages from about v _

to about log n.) Mass elimination is particularly simple to implement in the column
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datastructure:afterallrowswithnonzerosincolumnj are merged into one row, the

columns to be eliminated with j are those whose only remaining nonzero is in that
new row.

Third, we note that any two columns with the same nonzero structure will be

eliminated in the same stage by mass elimination. Thus we allow the option of com-

bining such columns into "supernodes" (or, as George and Liu call them, "indistin-

guishable nodes"). This speeds up the ordering by making the data structure for A

smaller. The degree computation must account for the sizes of supernodes, but this

turns out to be an advantage for two reasons. The quality of the ordering actually

improves slightly if the degree computation does not count neighbors within the same

supernode. (George and Liu observe this phenomenon and call the number of neigh-

bors outside a vertex's supernode its "external degree.") Also, supernodes improve

the approximate degree computation described below. Amalgamating columns into
supernodes is fairly slow (though it takes time only proportional to the size of A).

Supernodes can be amalgamated at every stage, periodically, or never; the current

default is every third stage.
Fourth, we note that the structure of ATA is not changed by dropping any row

of A whose nonzero structure is a subset of that of another row. This row reduction

speeds up the ordering by making the data structure smaller. More significantly, it
allows mass elimination to recognize larger cliques, which decreases the number of

stages dramatically. Duff and Reid [8] call this strategy "element absorption." Row

reduction takes time proportional to multiplying AA T in the worst case (though the

worst case is rarely realized and the constant of proportionality is very small). By

default, we reduce at every third stage; again the user can change this.

Fifth, to achieve larger independent sets and hence fewer stages, we relax the
minimum-degree requirement and allow elimination of any vertex of degree at most

ad+3, where d is the minimum degree at this stage and a and 3 are parameters. The

choice of threshold can be used to trade off ordering time for quality of the resulting

ordering. For problems that are very large, have many right-hand sides, or factor

many matrices with the same nonzero structure, ordering time is insignificant and

the tightest threshold is appropriate. For one-off problems of moderate size, looser

thresholds like 1.5d + 2 or even 2d + 10 may be appropriate. The threshold can be set

by the user; its default is 1.2d + 1.
Sixth and last, our code has the option of using an "approximate degree" instead

of computing the actual vertex degrees. Recall that a vertex is a column of A, and its

degree is the number of other columns with which it shares some nonzero row. Com-

puting all the vertex degrees in ATA takes time proportional to actually computing

ATA, though the constant is quite small and no extra space is needed. Still, the exact

degree computation can be the slowest part of a stage. If column j is a supernode

containing n(j) original columns, we define its approximate degree as

d(j) = E (nnz(A(i, :)) - n(j)).
a_j#O

This can be interpreted as the sum of the sizes of the cliques containing j, except

that j and the other columns in its supernode are not counted. This is a fairly good

approximation in practice; it errs only by overcounting vertices that are members of

at least three cliques containing j. George and Liu call such vertices "outmatched

nodes," and observe that they tend to be rare in the symmetric algorithm. Computing
approximate degrees takes only time proportional to the size of A.
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Column minimum degree sometimes performs poorly if the matrix A has a few
very dense rows, because then the structure of ATA consists mostly of the cliques

induced by those rows. Thus colmmd will withhold from consideration any row con-

taining more than a fixed proportion (by default, 50 percent) of nonzeros.

All these options for minimum degree are under the user's control, though the

casual user of MATLAB never needs to change the defaults. The default settings use

approximate degrees, row reduction and supernode amalgamation every third stage,
and a degree threshold of 1.2d + 1, and withhold rows that are at least 50 percent
dense.

3.3.2. Permutations for sparsity: Symmetric matrices. Preorderings for

Cholesky factorization apply symmetrically to the rows and columns of a symmetric

positive definite matrix. Sparse MATLAB includes two symmetric preordering permu-
tation functions. The colperm permutation can also be used as a symmetric ordering,

but it is usually not the best choice.

Bandwidth-limiting and profile-limiting orderings are useful for matrices whose

structure is "one-dimensional" in a sense that is hard to make precise. The reverse

Cuthill-McKee ordering is an effective and inexpensive profile-limiting permutation.

MATLAB function p -- symrcm(h) returns a reverse Cuthill-McKee permutation for

symmetric matrix A. The algorithm first finds a "pseudo-peripheral" vertex of the

graph of A, then generates a level structure by breadth-first search and orders the
vertices by decreasing distance from the pseudo-peripheral vertex. Our implementa-

tion is based closely on the SPARSPAK implementation as described by George and

Liu [11].

Profile methods like reverse Cuthill-McKee are not the best choice for most large

matrices arising from problems with two or more dimensions, or problems without

much geometric structure, because such matrices typically do not have reorderings
with low profile. The most generally useful symmetric preordering in MATLAB is

minimum degree, obtained by the function p = aym_d(A). Our symmetric minimum-

degree implementation is based on the column minimum degree described in §3.3.1.

In fact, symmmd just creates a nonzero structure K with a column for each column
of A and a row for each above-diagonal nonzero in A, such that KTK has the same

nonzero structure as A; it then calls the column minimum-degree code on K.

3.3.3. Nonzero diagonals and block triangular form. A square nonsingular

matrix A always has a row permutation p such that A(p, :) has nonzeros on its main

diagonal. The MATLAB function p = dmperm(A) computes such a permutation. With

two output arguments, the function [p,q] = dmperm(A) gives both row and column

permutations that put A into block upper triangular form; that is, A(p,q) has a
nonzero main diagonal and a block triangular structure with the largest possible

number of blocks. Notice that the permutations p returned by these two calls are

likely to be different.

The most common application of block triangular form is to solve a reducible

system of linear equations by block back-substitution, factoring only the diagonal

blocks of the matrix. Figure 9 is an m-file that implements this algorithm. The m-file

illustrates the call [p,q,r] -- dmperm(h), which returns p and q as before, and also
a vector r giving the boundaries of the blocks of the block upper triangular form. To

be precise, if there are b blocks in each direction, then r has length b + 1, and the ith

diagonal block of A(p, q) consists of rows and columns with indices from r(i) through

+ 1) - 1
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FIG. 3. The Cholesky factor of a matrix and its elimination tree.

Any matrix, whether square or not, has a form called the "Dulmage-Mendelsohn

decomposition" [4], [20], which is the same as ordinary block upper triangular form if

the matrix is square and nonsingular. The most general form of the decomposition,

for arbitrary rectangular A, is [p,q,r,sJ -- chaporm(h). The first two outputs are

permutations that put A(p, q) into block form. Then r describes the row boundaries

of the blocks and s the column boundaries: the ith diagonal block of A(p, q) has rows

r(i) through r(i + 1) - 1 and columns s(i) through s(i+ 1) - 1. The first diagonal block

may have more columns than rows, the last diagonal block may have more rows than

columns, and all the other diagonal blocks are square. The subdiagonal blocks are all

zero. The square diagonal blocks have nonzero diagonal elements. All the diagonal

blocks axe irreducible; for the nonsquare blocks, this means that they have the "strong

Hall property" [4]. This block form can be used to solve least squares problems by a

method analogous to block back-substitution; see the references for more details.

3.3.4. Elimination trees. The elimination tree [21] of a symmetric positive

definite matrix describes the dependences among rows or columns in Cholesky factor-

ization. Liu [16] surveys applications of the elimination tree in sparse factorization.

The nodes of the tree are the integers 1 through n, representing the rows of the matrix

and of its upper triangular Cholesky factor. The parent of row i is the smallest j > i

such that the (i, j) element of the upper triangular Cholesky factor of the matrix is

nonzero; if row i of the factor is zero after the diagonal, then i is a root. If the matrix

is irreducible, then its only root is node n.

Liu describes an algorithm to find the elimination tree without forming the

Cholesky factorization, in time almost linear in the size of the matrix. That algo-

rithm is implemented as the MATLAB function [t,q] = etree(A). The resulting tree

is represented by a row vector t of parent pointers: t(i) is the parent of node i, or

zero if i is a root.

The optional second output q is a permutation vector that gives a postorder

permutation of the tree, or of the rows and columns of A. This permutation reorders

the tree vertices so that every subtree is numbered consecutively, with the subtree's

root last. This is an "equivalent reordering" of A, to use Liu's terminology: the

Cholesky factorization of A(q, q) has the same fill, operation count, and elimination
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tree as that of A. The permutation brings together the "fundamental supernodes"

of A, which are full blocks in the Cholesky factor whose structure can be exploited in

vectorized or parallel supernodal factorization [2], [17].

The postorder permutation can also be used to lay out the vertices for a picture

of the elimination tree. The function tspy(A) plots a picture of the elimination tree

of A, as shown in Fig. 3.

3.4. Matrix division. The usual way to solve systems of linear equations in

MATLAB is not by calling lu or chol, but with the matrix division operators / and \.
If A is square, the result of X = A\B is the solution to the linear system AX = B;

if A is not square then a least squares solution is computed. The result of X -- A/B

is the solution to A = XB, which is (B'\A') '. Full MATLAB computes A\B by LU

factorization with partial pivoting if A is square, or by QR factorization with column

pivoting if not.

3.4.1. The sparse linear equation solver. Like full MATLAB, sparse MATLAB
uses direct factorization methods to solve linear systems. The philosophy behind this

is that iterative linear system solvers are best implemented as MATLAB m-files, which

can use the sparse matrix data structures and operations in the core of MATLAB.
If A is sparse, MATLAB chooses among a sparse triangular solve, sparse Cholesky

factorization, and sparse LU factorization, with optional preordering by minimum

degree in the last two cases. The result returned has the same storage class as B.

The outline of sparse A\B is as follows.

• If A is not square, solve the least squares problem.
• Otherwise, if A is triangular, perform a sparse triangular solve for each column

of B.

• Otherwise, if A is a permutation of a triangular matrix, permute it and then

perform a sparse triangular solve for each column of B.
• Otherwise, if A is Hermitian and has positive real diagonal elements, find a

symmetric minimum-degree order p and attempt to compute the Cholesky

factorization of A(p, p). If successful, finish with two sparse triangular solves
for each column of B.

* Otherwise (if A is not Hermitian with positive diagonal or if Cholesky fac-

torization fails), find a column minimum-degree order p, compute the LU
factorization with partial pivoting of A(:, p), and perform two sparse triangu-
lar solves for each column of B.

Section 3.5 describes the sparse least squares method we currently use.

For a square matrix, the four possibilities are tried in order of increasing cost.
Thus, the cost of checking alternatives is a small fraction of the total cost. The test

for triangular A takes only O(n) time if A is n x n; it just examines the first and

last row indices in each column. (Notice that a test for triangularity would take

O(n 2) time for a full matrix.) The test for a "morally triangular" matrix, which

is a row and column permutation of a nonsingular triangular matrix, takes time

proportional to the number of nonzeros in the matrix and is in practice very fast.

(A Dulmage-Mendelsohn decomposition would also detect moral triangularity, but

would be slower.) These tests mean that, for example, the MATLAB sequence

[L,U] = lu(h) ;

y = L\b;

x = U\y;
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will use triangular solves for both matrix divisions, since L is morally triangular and

U is triangular.

The test for Hermitian positive diagonal is an inexpensive guess at when to use

Cholesky factorization. Cholesky is quite a bit faster than LU, both because it does

half as many operations and because storage management is simpler. (The time to
look at every element of A in the test is insignificant.) Of course it is possible to

construct examples in which Cholesky fails only at the last column of the reordered

matrix, wasting significant time, but we have not seen this happen in practice.

The function spparms can be used to turn the minimum-degree preordering off if

the user knows how to compute a better preorder for the particular matrix in question.

MATLAB's matrix division does not have a block triangular preordering built in,

unlike (for example) the Harwell Mh28 code. Block triangular preordering and solution

can be implemented easily as an m-file using the dmperm function; see §4.3.
Full MATLAB uses the L1NPACK condition estimator and gives a warning if the

denominator in matrix division is nearly singular. Sparse MATLAB should do the

same, but the current version does not yet implement it.

3.4.2. Sparse triangular systems. The triangular linear system solver, which

is also the main step of LU factorization, is based on an algorithm of Gilbert and

Peierls [15]. When A is triangular and b is a sparse vector, x = A\b is computed

in two steps. First, the nonzero structures of A and b are used (as described below)
to make a list of the nonzero indices of x. This list is also the list of columns of

A that participate nontrivially in the triangular solution. Second, the actual values

of x are computed by using each column on the list to update the sparse accumulator

with a "spaxpy" operation (§3.1.3). The list is generated in a "topological" order,
which is one that guarantees that xi is computed before column i of A is used in a

spaxpy. Increasing order is one topological order of a lower triangular matrix, but
any topological order will serve.

It remains to describe how to generate the topologically ordered list of indices

efficiently. Consider the directed graph whose vertices are the columns of A, with

an edge from j to i if aij _ O. (No extra data structure is needed to represent this

graph--it is just an interpretation of the standard column data structure for A.) Each
nonzero index of b corresponds to a vertex of the graph. The set of nonzero indices

of x corresponds to the set of all vertices of b, plus all vertices that can be reached

from vertices of b via directed paths in the graph of A. (This is true even if A is

not triangular [12].) Any graph-searching algorithm could be used to identify those

vertices and find the nonzero indices of x. A depth-first search has the advantage

that a topological order for the list can be generated during the search. We add each
vertex to the list at the time the depth-first search backtracks from that vertex. This

creates the list in the reverse of a topological order; the numerical solution step then
processes the list backwards, in topological order.

The reason to use this "reverse postorder" as the topological order is that there

seems to be no way to generate the list in increasing or decreasing order, and the time

wasted in sorting it would often be more than the number of arithmetic operations.

However, the depth-first search examines just once each nonzero of A that participates
nontrivially in the solve. Thus generating the list takes time proportional to the
number of nonzero arithmetic operations in the numerical solve. This means that LU

factorization can run in time proportional to arithmetic operations.

3.5. Least squares and the augmented system. We have not yet written a

sparse QR factorization for the core of MATLAB. Instead, linear least squares problems
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oftheform

minlib- Axll

are solved via the augmented system of equations

r -t- Ax = b,

ATr = O.

Introducing a residual scaling parameter a, this can be written

0 (v):
The augmented matrix, which inherits any sparsity in A, is symmetric, but clearly

not positive definite. We ignore the symmetry and solve the linear system with a
general sparse LU factorization, although a symmetric, indefinite factorization might
be twice as fast.

A recent note by BjSrck [3] analyzes the choice of the parameter a by bounding

the effect of roundoff errors on the error in the computed solution x. The value of a

that minimizes the bound involves two quantities, Hrll and the smallest singular value

of A, which are too expensive to compute. Instead, we use an apparently satisfactory
substitute,

a = max [a_j ]/1000.

This approach has been used by several other authors, including Arioli, Duff, and de

Rijk [1], who do use a symmetric factorization and a similar heuristic for choosing a.

It is not clear whether augmented matrices, orthogonal factorizations, or iterative

methods are preferable for least squares problems, from either an efficiency or an

accuracy point of view. We have chosen the augmented matrix approach because it
is competitive with the other approaches, and because we could use existing code.

3.6. Eigenvalues of sparse matrices. We expect that most eigenvalue com-
putations involving sparse matrices will be done with iterative methods of Lanczos

and Arnoldi type, implemented outside the core of MATLAB as m-files. The most

time-consuming portion will be the computation of Ax for sparse A and dense x,

which can be done efficiently using our core operations.

However, we do provide one almost direct technique for computing all the eigen-

values (but not the eigenvectors) of a real symmetric or complex Hermitian sparse
matrix. The reverse Cuthill-McKee algorithm is first used to provide a permutation

that reduces the bandwidth. Then an algorithm of Schwartz [22] provides a sequence
of plane rotations that further reduces the bandwidth to tridiagonal. Finally, the

symmetric tridiagonal QR algorithm from dense MATLAB yields all the eigenvalues.

4. Examples. This section gives the flavor of sparse MATLAB by presenting

several examples. First, we show the effect of reorderings for sparse factorization by

illustrating a Cholesky factorization with several different permutations. Then we

give two examples of m-files, which are programs written in the MATLAB language
to provide functionality that is not implemented in the "core" of MATLAB. These

sample m-files are simplified somewhat for the purposes of presentation. They omit
some of the error checking that would be present in real implementations, and they

could be written to contain more flexible options than they do.
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4.1. Effect of permutations on Cholesky factors. This sequence of exam-

ples illustrates the effect of reorderings on the computation of the Cholesky factor-

ization of one symmetric test matrix. The matrix is S = WW T where W is the

Harwell-Boeing matrix NEST0479 [6], a model due to Westerberg of an eight-stage
chemical distillation column.

TABLE 2

Effect of permutations on Cholesky factorization.

nnz Time

Original order 30141 5.64

Reverse Cuthill-McKee 23866 4.26

Column count 12675 1.91

Minimum degree 12064 1.75

There are four figures. Each figure shows two spy plots, first a particular symmet-
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ric permutation of S and then the Cholesky factor of the permuted matrix• Figure 4

is the original ordering; Fig. 5 uses symmetric reverse Cuthill-McKee, symrcm; Fig. 6

uses the column count permutation, colperm; Fig. 7 uses symmetric minimum degree,

symmad. Each of the spy plots shows a matrix profile that is typical for the underlying

permutation: Cuthill-McKee shows an envelope; column count shows all the mass in

the later rows and columns; and minimum degree shows a recursive pattern curiously

similar to divide-and-conquer orderings like nested dissection.

The matrix S is of order 479 and has 7551 nonzeros. Table 2 shows the number

of nonzeros and the execution time in seconds (on a Sun SPARCstation-1) required to

compute the Cholesky factors for each of the permutations. The behavior of symrcm

and symmmd is typical; both produce significant reductions in nnz and in the execution

time. The behavior of colperm is less typical; its reductions are not usually this

significant.
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function x = cgsolve (A,b,tol)

Solve A*x = b by the conjugate gradient method.
Iterate until norm(A,x-b) / norm(b) <= tol.

x = zeros(size(b));

r = b;
rtr = r'*r;
p = zeros(size(b));
beta = O;
while (norm(r) > tol * norm(b) )

p = r + beta * p;
Ap = A * p;

alpha = rtr / ( p' * Ap );

x = x + alpha * p;

r = r - alpha * Ap;
rtrold = rtr;
rtr = r'*r;

beta = rtr / rtrold;
end

FIG. 8. Solving Ax = b by conjugate gradients.

function x = dmsolve (A,b)

Z Solve A*x = b by permuting A to block

upper triangular form and then performing
block back substitution.

Z Permute A to block form.

[p,q,r] = dmperm(A);

nblocks = length(r)-1;
A = A(p,q);

x = b(p);

Block backsolve.

for k = nblocks : -I : i

Indices above the kth block.

i = 1 : r(k)-l;

Indices of the kth block.

j = r(k) : r(k+l)-l;
x(j) = A(j,j) \ x(j);

x(i) = x(i) - A(i,j) * x(j);

end;

Undo the permutation of x.

x(q) = x;

F[(;. 9. Solving Ax = b by block triangular back-substitution.
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4.2. The conjugate gradient method. Iterative techniques like the conjugate

gradient method are often attractive for solving large sparse systems of linear equa-

tions. Figure 8 is an m-file for a conjugate gradient method. The code is somewhat

simplified--a real code might use a more complicated criterion for termination, might

compute Ap in a subroutine call in case A is not held explicitly, and might provide for

preconditioning--but it illustrates an important point. Sparsity is never mentioned

explicitly in the code. If the argument A is sparse, then hp = h*p will be computed

as a sparse operation; if A is full, then all the operations will be full.

In contrast to sparse direct methods, most iterative methods operate on matrices

and vectors at a high level, typically using the coefficient matrix only in matrix-

vector multiplications. This is the reason for our decision not to build an iterative

linear solver into the core of MATLAB; such solvers can be more easily and flexibly

written as m-files that make use of the basic sparse operations.

4.3. Solving reducible systems. If A is a reducible matrix, the linear system

Ax = b can be solved by permuting A to block upper triangular form (with irreducible

diagonal blocks) and then performing block back-substitution. Only the diagonal

blocks of the permuted matrix need to be factored, saving fill and arithmetic in the

above-diagonal blocks. This strategy is incorporated in some existing Fortran sparse

matrix packages, most notably Duff and Reid's code HA28 in the Harwell Subroutine

Library [7]. Figure 9 is an implementation as a MATLAB m-file. This function is a

good illustration of the use of permutation vectors.

The call [p,q,r] --- dmperm(h) returns a row permutation p and a column per-

mutation q to put A in block triangular form. The third output argument r is an

integer vector describing the boundaries of the blocks: the kth block of A(p, q) includes

indices from r(k) to r(k + 1) - 1. The loop has one iteration for each diagonal block;

note that i and j are vectors of indices. The code resembles an ordinary triangular

backsolve, but at each iteration the statement x(j) = h(j ,j) \ x(j) solves for an

entire block of x at once by sparse LU decomposition (with column minimum-degree

ordering) of one of the irreducible diagonal blocks of A.

Again, this code is simplified a bit. A real code would merge every sequence of

adjacent 1 × 1 diagonal blocks into a single triangular block, thus reducing the number

of iterations of the main loop.
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